はじめに
皆さん、数学の用語を英語で言いたい時、意外と何と言えばいいか分からなくなった経験はありませんか?なんとなく分かるけど、答えられるか不安という方も多いと思います。
そこで今回は、約数・倍数・余りに関わる英単語・表現を解説していきます。算数・数学のレベルとしては、中学生でも理解できるものとしています。
今回のトピックは、初級・中級・上級に分けて紹介していきます。今回の単語リストを確認し、より難易度の高い表現を知りたいと思った方は、以下のリンクから中級・上級(一つの記事)に進んでください。
→ 倍数・約数・余りの英単語表現(中級・上級)
最後には、全体をまとめた英語の問題演習があるので、そちらにも挑戦してみてください。
(所要時間:5~10分)
単語・表現の一覧
単語・表現 | 意味 |
---|---|
Multiple | 倍数 |
Divisor | 約数 |
Common multiple | 公倍数 |
Common divisor | 公約数 |
The least common multiple | 最小公倍数 |
The greatest common divisor | 最大公約数 |
Remainder | 余り |
A with a remainder of B | AあまりB |
A with remainder B | AあまりB |
A remainder B | AあまりB |
Without a remainder | 余りなし |
A is divisible by B | AはBで割り切れる |
単語の解説
倍数と約数
まず、倍数は「multiple」、約数は「divisor」と言います。どちらも、四則演算の英単語と表現で紹介したように、「かける」を表す「multiply」と、「割る」を表す「divide」から来ていることが分かると思います。
英語をある程度勉強してる方なら、「multiple」が名詞なことに疑問を持つかもしれません。
「multiple」は、形容詞として使われることが多いですが、「倍数」を表すときのみ名詞になります。
では、なぜ「divisor」のように「multiplier」にしないのでしょうか?
その理由は、「multiplier」という数学用語がすでに存在しているからです。
そちらは、次の中級・上級の記事で紹介します。
これらの単語は次のように使用します:
- 15 is a multiple of 5. (15は5の倍数である)
- 5 is a divisor of 15. (5は15の約数である)
また、二つの数を比べるときによく使用される「公倍数」と「公約数」は、それぞれ「common multiple」と「common divisor」と言います。ここでの「common」は、「共通の」という意味です。では、例文を紹介します。
- 10 is a common multiple of 2 and 5. (10は2と5の公倍数である)
- 3 is a common divisor of 18 and 24. (3は18と24の公約数である)
さらに、「最小公倍数」と「最大公約数」は、「the least common multiple」と「the greatest common divisor」と表します。
(*最小公倍数を「the lowest common multiple」とするときもあります)
また、「LCM」や「GCD」という表記を見たことがあるかもしれませんが、これらは上の表現の頭文字を取ったものです。
割り算の余り
割り算の余りを「remainder」と呼びます。この単語は、英語で「残る」を意味する「remain」から来ています。
「remainder」は、割り算の余りだけでなく、引き算の余り(差)を表すときもあります
また、ある数の割り算を考えたとき、その数が割り切れずに「AあまりB」の形で表せる場合、英語では、「A with a remainder of B」と書き表します。
ただ、話し言葉として、「A with remainder B」や「A remainder B」が使われることも多いです。
- 23 divided by 5 gives 4 with a remainder of 3. (23を5で割ると、4あまり3となる)
- What is the remainder when we divide 10 by 4?. (10を4で割った余りはなんですか?)
そして、割り算で余りがないことを「without a remainder」と言います。
さらに、余りがなく割り切れることを「divisible」といい、「A is divisible by B」で「AはBで割り切れる」となります。
- 12 is divided by 3 without a remainder. (12は余りなしで3で割り切れる)
- 12 is not divisible by 7. (12は7で割り切れない)
解説はここまでです。次の練習問題に挑戦してみて下さい。
練習問題
Find all the common divisors of 84 and 14.
解答
2, 7 and 14
問題の和訳:84と14の公約数をすべて求めなさい
Fill in the gaps A, B and C to complete the following paragraph. You should only use the terms from today’s lesson.
10 divided by 3 equals 3 with a ( A ) of 1, so 3 is not a ( B ) of 10. However, 12 divided by 3 is equal to 4 without a ( A ), so 12 is ( C ) by 3.
解答
A. remainder
B. divisor
C. divisible
問題の和訳:空白 A・B・C を埋めることで次の文章を完成させなさい。今日の授業からの単語のみを使いなさい。
For the below statement, choose the correct option.
For some two numbers, the least common multiple and the greatest common divisor of them are the same.
- This statement is always true for any two numbers
- This statement is not always but sometimes true for some two numbers
- This statement is false for any two numbers
- It is not possible to decide
解答
B
問題の和訳:下の文章について、正しい選択肢を選びなさい
ある2つの数の最小公倍数と最大公約数が同じである。
- この文章はどんな2つの数の組についても常に正しい
- この文章はいつもではないが、いくつかの2つの数の組では正しい
- この文章はどんなの2つの数の組についても正しくない
- 判断することはできない
解説:上の文章が成り立つのは、2つの数が同じときです。例えば、7と7の組のとき、最小公倍数と最大公約数はどちらも7です。「2つの違う数」とは言っていないので、同じ数でもオッケーというわけです。

問題はいかがでしたか?最後の問題は、問題文を理解するのが難しかったかもしれません。これをすぐに解けた方は、この記事の内容を十分に理解していると思います。
単語のまとめ
倍数と約数
単語・表現 | 意味 |
---|---|
Multiple | 倍数 |
Divisor | 約数 |
Common multiple | 公倍数 |
Common divisor | 公約数 |
The least common multiple | 最小公倍数 |
The greatest common divisor | 最大公約数 |
割り算の余り
単語・表現 | 意味 |
---|---|
remainder | 余り |
A with a remainder of B | AあまりB |
A with remainder B | AあまりB |
A remainder B | AあまりB |
Without a remainder | 余りなし |
A is divisible by B | AはBで割り切れる |
最後に
倍数・約数・余りは、中学・高校・大学のどのカテゴリーでも使われるトピックです。なので、これから数学を英語で学びたい皆さんにとって、今後必ず役に立つと思います。
次の記事では、分りやすく説明するために中級と上級の両方を入れています。自分のレベルにあった部分を中心にぜひ読んでみてください。最後まで読んでいただきありがとうございました。
コメント